
2005-01-3370

Machine Learning for Rocket Propulsion Health Monitoring

Mark Schwabacher
NASA Ames Research Center

Copyright © 2005 SAE International

ABSTRACT

This paper describes the initial results of applying two
machine-learning-based unsupervised anomaly
detection algorithms, Orca and GritBot, to data from two
rocket propulsion testbeds. The first testbed uses
historical data from the Space Shuttle Main Engine. The
second testbed uses data from an experimental rocket
engine test stand located at NASA Stennis Space
Center. The paper describes four candidate anomalies
detected by the two algorithms.

INTRODUCTION

The ability to detect anomalies in sensor data from a
complex engineered system such as a spacecraft is
important for at least three reasons. First, detecting
anomalies in near-real-time during flight can be helpful in
making crucial decisions such as the decision of whether
to abort the launch of a spacecraft prior to reaching the
intended altitude. Second, for a reusable spacecraft
such as the Space Shuttle, detecting anomalies in
recorded sensor data after a flight can help to determine
what maintenance is or is not needed before the next
flight. Third, the detection of recurring anomalies in
historical data covering a series of flights can produce
engineering knowledge that can lead to design
improvements.

The current approach to detecting anomalies in
spacecraft sensor data is to use large numbers of
human experts. Flight controllers watch the data in near-
real time during each flight. Engineers study the data
after each flight. These experts are aided by limit checks
that signal when a particular variable goes outside of a
predetermined range. The current approach is very labor
intensive. Also, humans may not be able to recognize
faults that involve the relationships among large
numbers of variables. Further, some potential faults
could happen too quickly for humans to detect them and
react before they become catastrophic. On future
missions to Mars, there will be a speed-of-light delay of
up to 20 minutes in between when the data is sensed
and when flight controllers on Earth first see it, furthering
the need for automated approaches to anomaly
detection.

One approach to automating anomaly detection is the
model-based approach. This approach encodes human
knowledge into a model, which is then used to
automatically detect faults. Examples of systems that
use the model-based approach include Livingstone [1, 2,
3], Titan [4], TEAMS-RT [5], RODON [6], SHINE [7], and
MEXEC [8]. Building the models is very labor intensive; it
therefore may not be feasible to model every part of a
highly complex system such as a spacecraft. It also may
not be possible to model all possible failure modes. We
therefore consider supplementing the model-based
approach with the data-driven approach.

The data-driven approach seeks to build a model for
detecting anomalies directly from the data, rather than
building it based on human expertise. In this paper, we
explore a particular data-driven approach, which is
based on anomaly detection algorithms from the
machine learning community.

ANOMALY DETECTION

Anomaly detection algorithms, also known as outlier
detection algorithms, seek to find portions of a data set
that are somehow different from the rest of the data set.
A supervised anomaly detection algorithm requires
training data consisting of a set of examples of
anomalies, and a set of examples of non-anomalous (or
nominal) data. From the data, the algorithm learns a
model that distinguishes between the nominal and the
anomalous data points. Supervised anomaly detection
algorithms typically require tens or hundreds of labeled
examples of anomalies, plus a similar number of labeled
examples of nominal data points, in order to obtain
adequate performance. Unsupervised anomaly detection
algorithms are trained using only nominal data. They
learn a model of the nominal data, and signal an
anomaly when new data fails to match the model. They
typically require tens or hundreds of nominal data points
in order to obtain adequate performance.

For both of the testbeds that we used, the number of
examples of anomalies available to us was fairly small.
We therefore decided to use unsupervised anomaly
detection algorithms, since they do not require labeled
examples of anomalies. The next two subsections
describe the two unsupervised anomaly detection
algorithms that we used: Orca and GritBot.

ORCA

Orca, which was developed by Bay and Schwabacher,
uses a nearest-neighbor approach to anomaly detection.
It defines an anomaly to be a point whose nearest
neighbors in feature space are far away from it. It uses a
novel pruning rule to obtain near-linear-time
performance, allowing it to scale to very large datasets
[9].

GRITBOT

GritBot is a commercial product from RuleQuest
Research [10]. Rather than just looking for points that
are anomalous with respect to the entire dataset, GritBot
searches for subsets of the dataset in which an anomaly
is apparent. For each anomalous point, it reports a
description of the relevant subset of the dataset, based
on values of discrete variables or ranges of continuous
variables, in which the target variable usually has a
particular value (if it is discrete) or range of values (if it is
continuous). The point is considered to be an anomaly
because the target variable at that point is significantly
different from the value of the target variable at the vast
majority of the other points in the subset.

TESTBEDS

We used two testbeds to test the anomaly detection
algorithms: The Space Shuttle Main Engine and a rocket
engine test stand at NASA Stennis Space Center.

SPACE SHUTTLE MAIN ENGINE

The Space Shuttle propulsion system consists of two
solid rocket boosters, and three Space Shuttle Main
Engines (SSMEs) [11]. The SSMEs are located on the
Orbiter. During the initial ascent, all five engines are fired
together. Approximately two minutes after launch, the
solid rocket boosters run out of fuel and are jettisoned,
and the Shuttle continues its ascent using only the three
SSMEs. The SSMEs are liquid-fueled rocket engines
employing cryogenic liquid hydrogen and liquid oxygen
as propellants. These propellants are stored in the
external tank, which is jettisoned when the Shuttle
reaches its intended orbit, about nine minutes after
launch.

The SSMEs are reusable. After each flight, they are
removed from the Orbiter, inspected, serviced as
necessary, and then installed onto an Orbiter (which is
not necessarily the same orbiter). Each engine is
periodically acceptance tested by firing it on the ground
using test stands located at NASA Stennis Space
Center.

Each SSME has approximately 90 sensors measuring
quantities such as temperature, pressure, fuel flow rate,
rotational velocity, and vibration. Many of the sensors
are redundant for reliability reasons. For example, four
identical pressure sensors may be placed right next to
each other with the expectation that they will all provide

approximately the same value. When one of the sensors
provides a substantially different value from the other
three, it can be inferred that the sensor has failed. When
the SSMEs are used on the Shuttle, additional relevant
information is available from sensors located in the
Shuttle’s fuel feed system. When the SSMEs are fired
on a test stand, the test stand acts as a fuel feed
system, and provides additional relevant information
from sensors located on the test stand. A small number
of additional sensors are placed directly on the SSME
during testing. The initial results reported in this paper
use only the data from the sensors that are located on
the SSME and available both in flight and on the test
stand.

ROCKET ENGINE TEST STANDS

NASA Stennis Space Center (SSC) in Mississippi
operates several rocket engine test stands. Each test
stand provides a structure strong enough to hold a
rocket engine in place as it is fired, and a fuel feed
system to provide fuel to the engine. Test stands A-1
and A-2 are large test stands used to test the SSMEs.
Test stand E-1 is a much smaller test stand used to test
experimental rocket engines [12]. Test stand E-1 is
being used as part of the Integrated Systems Health
Management (ISHM) Testbeds and Prototypes Project
as a testbed for a variety of ISHM technologies. It has
numerous sensors on its fuel feed system, which are
analogous to the sensors on a spacecraft’s fuel feed
system. In this paper, we present the initial results of
applying anomaly detection algorithms to these sensor
data.

RESULTS

So far all of the anomalies that we have detected using
the two algorithms have been ones that the domain
experts either already knew about, or considered to be
insignificant. However, some of the anomalies that have
been detected demonstrate the potential of the
algorithms to detect significant anomalies in the future.
In this section, we review several examples of such
detected anomalies.

In each case described in this section, we ran an
anomaly detection algorithm on data from one rocket
engine test. For the SSME, each test had 129
continuous variables, 18 discrete variables, and about
13,000 time steps. For Test Stand E-1, each test had 73
continuous variables, 87 discrete variables, and about
39,000 time steps. GritBot took about 5 minutes to
analyze the data from an SSME test, and about 7
minutes to analyze the data from an E-1 test, on a 1.5
GHz Pentium M laptop. Orca took about 3 minutes to
analyze the data from an SSME test, and about 12
minutes to analyze the data from an E-1 test, on a 500
MHz Sun Blade 100 workstation. Each SSME test lasted
about 8 minutes, so both algorithms were able to
process the data faster than real time. Each E-1 test
lasted about 2.5 minutes, so both algorithms processed
that data somewhat slower than real time. The data from

the E-1 tests had a higher sampling rate than the data
from the SSME tests, which prevented the algorithms
from being able to process the data in real time. Note
that the processors we used were slow by today’s
standards; we believe that both algorithms could
process the E-1 data in real time using faster
processors.

Figure 1: SSME fuel flow anomaly

The first anomaly that we consider is shown in Figure 1.
(Note that in all of the figures in this paper, we have
removed the numbers from the Y axis in order to protect
the confidentiality of the data.) The SSME has redundant
fuel flow sensors. Figure 1 shows the values of two of
those sensors during a short period of time (0.6
seconds). The values of the two sensors are usually
almost exactly the same. However, at approximately
427.35 seconds, they differed substantially. GritBot
considered this difference to be an anomaly. GritBot also
detected 140 other similar anomalies involving
differences between redundant fuel flow sensors; the
one in Figure 1 was the strongest anomaly. The domain
experts could not explain the difference between the two
sensor values, but they noted that this type of small
difference occurs fairly regularly, that the small errors
occur in both directions, and that the values are
averaged before being used to make a decision. They
therefore felt that the sensor anomaly was not a reason
for concern.

Figure 2: SSME mixture ratio anomaly

The second anomaly we consider is shown in Figure 2.
Mixture ratio is the oxidizer to fuel ratio of the SSME’s
main combustion chamber. By definition, it can not be
negative. GritBot observed that this variable was almost
never negative in the training data, and then detected
several points at which it was negative in the test data,
all within the first two seconds of a test. The domain
experts said that negative reported mixture ratio at the
beginning of a test is a known and well-understood
artifact of the way in which mixture ratio is calculated.
The SSME does not have an oxidizer flow meter, so the
ratio can not be calculated directly. Instead it is
calculated indirectly. The indirect calculation produces
reasonably accurate values, except during startup.

Figure 3: SSME controller bus voltage anomaly

The third anomaly that we consider is shown in Figure 3.
The voltage on controller bus 2 usually stays within a
fairly narrow range. Orca detected one point in time,
approximately 2.5 seconds after the beginning of the
test, at which the voltage dropped to an unusually low
level. The domain experts said that the main igniters fire
at that point in time, which causes the drop in voltage.

They already knew about the drop in voltage, and did
not consider it to be an anomaly.

The fourth anomaly that we consider is from Rocket
Engine Test Stand E-1. Some of the variables for E-1
are redline enablers – these are discrete control inputs
that enable or disable a redline, which is a threshold on
a sensor reading beyond which an automatic shutdown
is triggered. There are some pairs of redline enablers
that tend to be turned on or off at the same time. GritBot
noticed that one particular pair of redline enablers had
the same on or off value at every timestep in a test
except for one timestep: one redline enabler was turned
on one timestep later than the other one. GritBot
considered this one point where the two redline enablers
had opposite Boolean values to be an anomaly. Orca
found some similar discrepancies between redline
enablers. Our domain experts felt that these very small
delays in between enabling one redline and another
redline were not significant and should not be
considered anomalies.

RELATED WORK

Park, et al. applied the BEAM (Beacon-based Exception
Analysis for Multi-Missions) system to anomaly detection
in SSME data [13]. BEAM has nine components that use
nine different approaches to anomaly detection. The
work reported in [13] only used one of the nine
components: the Dynamical Invariant Anomaly Detector
(DIAD). DIAD is an unsupervised anomaly detection
algorithm, like GritBot and Orca. DIAD differs from
GritBot and Orca in that DIAD only considers one
variable at a time, while GritBot and Orca both consider
all of the variables together and look for anomalies in the
relationships among the variables, in addition to
anomalies in individual variables. Park, et al. trained
DIAD using data from 16 nominal tests, and tested it
using data from seven tests that contained known
failures. It detected all of the major failures in these
seven tests, although it missed some minor failures and
had some false alarms.

Iverson’s Inductive Monitoring System (IMS) [14] is
another unsupervised learning system for fault detection.
It uses a clustering algorithm to cluster the nominal
training data into clusters representing different modes
of the system. When new data fails to fit into any of the
clusters, it signals an anomaly, using the distance from
the nearest cluster as a measure of the strength of the
anomaly. After the STS-107 Space Shuttle Columbia
disaster, Iverson applied IMS to some relevant data. He
trained it using data from five previous Space Shuttle
flights, and then tested it using STS-107 data. It
detected an anomaly in data from temperature sensors
on the Shuttle’s left wing shortly after the foam impact,
suggesting in retrospect that with the aid of IMS, flight
controllers might have been able to detect the damage
to the wing much sooner than they did.

Many of the existing approaches to data-driven systems
health monitoring have used artificial neural networks to

model the system. Artificial neural networks are a type of
model based loosely on the neural structure of the brain,
in which the weights of the connections among neurons
are automatically adjusted to maximize the fit of the
model to the data [15]. Guo and Musgrave [16] applied
neural networks to sensor validation for the SSME. He
and Shi [17] found that support vector machines
produced better accuracy than artificial neural networks
when applied to a pump diagnosis problem. One
disadvantage of neural network approaches is that most
humans are unable to understand or interpret the neural
network models. Models based on decision trees,
decision rules, or nearest neighbors are generally easier
to understand, and therefore more likely to be accepted
by human experts.

CONCLUSION

This paper presents four candidate anomalies that were
discovered by applying two unsupervised anomaly
detection algorithms to two rocket propulsion testbeds.
Although none of these candidate anomalies were
judged by our domain experts to be significant, we
believe that they demonstrate that the algorithms have
the potential to detect the kind of unusual phenomena in
the data that could correspond to significant anomalies.
We have also demonstrated that these algorithms have
the potential to process real rocket propulsion sensor
data in nearly real time.

An important point to make is that although some
anomalies were detected by both Orca and GritBot,
other anomalies were only detected by one algorithm or
the other algorithm. The reason for the difference is that
the two algorithms use two different definitions of an
anomaly. Other anomaly detection algorithms besides
these two algorithms use other definitions of an
anomaly. Because of these differences, it can be useful
to run multiple anomaly detection algorithms on a data
set.

FUTURE WORK

This paper presents early results; there are many
directions for future research. The preliminary results
presented in this paper consist of four examples of
candidate anomalies that were detected by two
unsupervised anomaly detection algorithms. Although
interesting, none of these candidate anomalies were
judged by the domain experts to be significant. In the
future, we would like to test the ability of these
algorithms to detect known anomalies in the data, by
applying them to several data sets that are known to
contain anomalies. Unfortunately, we will probably never
have enough data to calculate false positive and false
negative error rates with any statistical significance, but
testing the algorithms on a larger amount of data than
we have used so far should shed additional light on the
algorithms’ performance.

The results presented in this paper apply the algorithms
to data from one propulsion test at a time, flagging

points in time within the test that differ from the rest of
the test as anomalies. Another approach is to use a set
of past tests that are thought to be nominal as training
data, and then test the algorithm on a new test. We have
done some preliminary trials in which we trained each
algorithm on one past test and then tested it on one
newer test. The anomalies detected were essentially the
same ones that were detected when running the
algorithm on only one test. Further testing of the
algorithms across multiple engine tests is needed.

Because of the small number of examples of anomalies
available to us, we decided to first try unsupervised
anomaly detection algorithms. We believe that the small
number of examples of known anomalies will present a
challenge for supervised anomaly detection algorithms.
A direction for future research is to try to find ways to
make supervised learning algorithms perform
adequately given such a small number of examples of
anomalies. One approach would be to use each time
step from an anomaly that spans multiple time steps as
an example of an anomaly.

In the results presented in this paper, the anomaly
detection algorithms did not make use of any expert
knowledge. We plan to explore ways of using
background knowledge within the automated anomaly
detection context. One possible source of knowledge is
the determinations made by the domain experts that the
candidate anomalies described in this paper are not
significant. One way to make use of this knowledge
would be to use semi-supervised learning algorithms,
and providing them with examples that are labeled as
nominal for each candidate anomaly that the experts
judged to be nominal. The algorithm would then avoid
incorrectly signaling an anomaly in the future when
similar patterns appear in the data.

The data sets used in this research are all time series.
The algorithms described in this paper, however, do not
explicitly make use of time. Instead, time is treated just
like any other variable. We plan to explore algorithms
that explicitly model time. One method in particular that
we plan to explore is windowing. In the windowing
approach, for each time step the algorithm considers the
sensor values at that time step and at a fixed number of
previous time steps in determining whether or not the
point is an anomaly.

We also plan to test anomaly detection algorithms using
other systems health management testbeds besides the
two rocket-propulsion testbeds described here. In
particular, we plan to test the algorithms using data from
the International Space Station and from the Apollo
missions to the Moon.

ACKNOWLEDGMENTS

This work would not have been possible without the
collaboration of our domain experts. For providing SSME
data and expertise, we thank Matt Davidson, Al
Daumann, and John Stephens of Boeing Rocketdyne.

For providing rocket engine test stand data and
expertise, we thank Curtis Olive, Randy Holland, Mark
Hughes, and Fernando Figueroa of NASA Stennis
Space Center.

We thank Matt Davidson, Anna Pryor, and Adrian
Agogino for reviewing a draft of this paper.

The research described in this paper was funded by the
NASA Exploration Systems Mission Directorate (ESMD)
under the Technology Maturation Program as part of the
ISHM Testbeds and Prototypes Project, and by ESMD’s
Advanced Space Technology Program as part of the
Collaborative Decision Systems Project.

REFERENCES

1. Williams, Brian C. and P. Pandurang Nayak, “A
Model-based Approach to Reactive Self-Configuring
Systems,” In Proceedings of the National
Conference on Artificial Intelligence, 1996.

2. Kurien, James and P. Pandurang Nayak, “Back to
the Future for Consistency-based Trajectory
Tracking,” Proceedings of AAAI-2000 and DX-2000.
2000.

3. Narasimhan, Sriram, Richard Dearden, and
Emmanuel Benazera, “Combining Particle Filters
and Consistency-based Approaches for Monitoring
and Diagnosis of Stochastic Hybrid Systems,” 15th
International Workshop on Principles of Diagnosis
(DX04), Carcassonne, France, June 2004.

4. Brian C.Williams, Mitch Ingham, Seung Chung, Paul
Elliott, and Michael Hofbaur. Model-based
Programming of Fault-Aware Systems. AI Magazine,
Fall 2003.

5. TEAMS-RT Web page.
http://www.teamqsi.com/RT.html

6. RODON Web page.
http://www.sorman.se/products/rodon/overview.asp

7. R. Colgren, R. Abbott, P. Schaefer, H. Park, R.
Mackey, M. James, M. Zak, F. Fisher, S. Chien, T.
Johnson, S. Bush, “Technologies for Reliable
Autonomous Control (TRAC) of UAVs,” 19th Digital
Avionics Systems Conference, October 2000.

8. Barrett, Anthony. Model Compilation for Real-Time
Planning and Diagnosis with Feedback.
Proceedings on the International Joint Conference
on Artificial Intelligence, 2005. To appear.

9. Bay, S. D. and M. Schwabacher, “Mining Distance-
Based Outliers in Near Linear Time with
Randomization and a Simple Pruning Rule,”
Proceedings of The Ninth ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining. 2003.

10. Gritbot. RuleQuest Research Web site.
http://www.rulequest.com. 2005.

11. Main Propulsion System. NASA Kennedy Space
Center Web page.
http://science.ksc.nasa.gov/shuttle/technology/sts-
newsref/sts-mps.html. 2005.

12. E-1 Test Facility. NASA Stennis Space Center Web
page.
https://rockettest.ssc.nasa.gov/ssc_ptd/ssc_e1_test
_stand.asp. 2005.

13. Park, H., Mackey, R., James, M., Zak, M., Kynard,
M., Sebghati, J., and Greene, W., Analysis of Space
Shuttle Main Engine Data Using Beacon-based
Exception Analysis for Multi-Missions. Aerospace
Conference Proceedings, IEEE, Vol 6, pp 6-2835 -
6-2844, March 9-16, 2002.

14. David L. Iverson. Inductive System Health
Monitoring. Proceedings of the International
Conference on Artificial Intelligence, IC-AI '04,
Volume 2 & Proceedings of the International
Conference on Machine Learning; Models,
Technologies & Applications, MLMTA '04, June 21-
24, 2004, Las Vegas, Nevada, USA.

15. Bishop, C. M. Neural Networks for Pattern
Recognition. Oxford University Press, 1995.

16. Guo, T.-H. & Musgrave, J. Neural network based
sensor validation for reusable rocket engines.
Proceedings of the American Control Conference,
1995, Volume 2, pp. 1367-1372.

17. He, F., & Shi, W. WPT-SVMs Based Approach for
Fault Detection of Valves in Reciprocating Pumps.
Proceedings of the American Control Conference,
2002.

CONTACT

Mark Schwabacher earned his Ph.D. in computer
science in 1996 from Rutgers University. His thesis work
applied artificial intelligence to engineering design. He
has worked at NASA Ames Research Center for seven
years. He served as the Software Lead of the NASA X-
37 Integrated Vehicle Health Management Experiment,
and is currently researching data mining for Integrated
Systems Health Management in collaboration with
NASA Johnson Space Center, NASA Stennis Space
Center, Boeing Rocketdyne, and Northrop Grumman.
He has also applied anomaly detection algorithms to
Earth science and to aviation security.

Mark Schwabacher
NASA Ames Research Center
MS 269-3
Moffett Field, CA 94035
650-604-4274
mark.a.schwabacher@nasa.gov
http://ti.arc.nasa.gov/people/schwabac/

